Меню
Бесплатно
Главная  /  С чего начать планирование  /  Климатические особенности различных регионов африканского континента. Циркуляция воздушных масс во внетропических широтах Утверждение о циркуляции воздушных

Климатические особенности различных регионов африканского континента. Циркуляция воздушных масс во внетропических широтах Утверждение о циркуляции воздушных

Взаимодействие океана и атмосферы.

27. Циркуляция воздушных масс.

© Владимир Каланов,
"Знания-сила".

Перемещение воздушных масс в атмосфере определяется тепловым режимом и изменением давления воздуха. Совокупность основных воздушных течений над планетой называется общей циркуляцией атмосферы . Основные крупномасштабные атмосферные движения, слагающие общую циркуляцию атмосферы: воздушные течения, струйные течения, воздушные потоки в циклонах и антициклонах, пассаты и муссоны.

Движение воздуха относительно земной поверхностиветер – появляется потому, что атмосферное давление в различных местах воздушной массы неодинаково. Принято считать, что ветер – это горизонтальное движение воздуха. На самом деле воздух движется обычно не параллельно поверхности Земли, а под небольшим углом, т.к. атмосферное давление меняется и в горизонтальном и в вертикальном направлениях. Направление ветра (северный, южный и т.д.) означает, откуда ветер дует. Под силой ветра подразумевается его скорость. Чем она выше, тем ветер сильней. Скорость ветра измеряют на метеорологических станциях на высоте 10 метров над Землёй, в метрах в секунду. На практике силу ветра оценивают в баллах. Каждый балл соответствует двум-трём метрам в секунду. При силе ветра в 9 баллов его уже считают штормовым, а при 12 баллах – ураганом. Распространённый термин «буря» означает любой очень сильный ветер, независимо от количества баллов. Скорость сильного ветра, например, при тропическом урагане, достигает огромных значений – до 115 м/с и более. Ветер возрастает в среднем с высотой. У поверхности Земли его скорость снижается трением. Зимой скорость ветра в целом выше, чем в летнее время. Наибольшие скорости ветра наблюдаются в умеренных и полярных широтах в тропосфере и нижней стратосфере.

Не совсем ясна закономерность изменения скорости ветра над материками на небольших высотах (100–200 м). здесь скорости ветра достигают самых больших значений после полудня, а самых малых – в ночное время. Это наблюдается лучше всего летом.

Очень сильные ветры, до штормовых, бывают днём в пустынях Центральной Азии, а ночью наступает полный штиль. Но уже на высоте 150–200 м наблюдается прямо противоположная картина: максимум скорости ночью и минимум днём. Такая же картина наблюдается и летом, и зимой в умеренных широтах.

Много неприятностей может принести порывистый ветер пилотам самолётов и вертолётов. Струи воздуха, движущиеся в различных направлениях, толчками, порывами, то ослабевая, то усиливаясь, создают большое препятствие для движения воздушных судов – появляется болтанка – опасное нарушение нормального полёта.

Ветры, дующие с горных хребтов выхоложенного материка в направлении тёплого моря, называются борой . Это – сильный, холодный, порывистый ветер, дующий обычно в холодное время года.

Многим известна бора в районе Новороссийска, на Черном море. Здесь созданы такие природные условия, что скорость боры может достигать 40 и даже 60 м/с, а температура воздуха понижается при этом до минус 20°С. Бора возникает чаще всего в период с сентября по март, в среднем 45 дней в году. Иногда последствия её были такими: замерзала гавань, лёд покрывал корабли, строения, набережную, с домов срывались крыши, опрокидывались вагоны, суда сбрасывались на берег. Бора наблюдается и в других районах России – на Байкале, на Новой Земле. Известна бора на Средиземном побережье Франции (там она называется мистраль) и в Мексиканском заливе.

Иногда в атмосфере возникают вертикальные вихри с быстрым спиралеобразным движением воздуха. Эти вихри называются смерчами (в Америке их называют торнадо). Смерчи бывают диаметром в несколько десятков метров, иногда до 100–150 м. измерить скорость воздуха внутри смерча чрезвычайно трудно. По характеру производимых смерчем разрушений оценочными величинами скорости вполне могут быть 50–100 м/с, а в особенно сильных вихрях – до 200–250 м/с с большой вертикальной составляющей скорости. Давление в центре поднимающегося вверх столба смерча падает на несколько десятков миллибар. Миллибары для определения давления обычно используют в синоптической практике (наряду с миллиметрами ртутного столба). Для перевода баров (миллибаров) в мм. ртутного столба существуют специальные таблицы. В системе СИ атмосферное давление измеряется в гектопаскалях. 1гПа=10 2 Па=1мб=10 -3 бар.

Смерчи существуют недолго – от нескольких минут до нескольких часов. Но и за это небольшое время они успевают натворить много бед. При подходе смерча (над сушей смерчи иногда называют тромбами) к зданиям разница между давлением внутри здания и в центре тромба приводит к тому, что здания как бы взрываются изнутри – разрушаются стены, вылетают стекла и рамы, срываются крыши, иногда не обходится и без человеческих жертв. Бывают случаи, когда людей, животных, а также различные предметы смерч поднимает в воздух и переносит на десятки, а то и сотни метров. В своём движении смерчи продвигаются на несколько десятков километров над морем и ещё больше – над сушей. Разрушительная сила смерчей над морем меньше, чем над сушей. В Европе тромбы редки, чаще они возникают в азиатской части России. Но особенно часты и разрушительны торнадо в США. О смерчах и торнадо читайте дополнительно на нашем сайте в разделе .

Атмосферное давление очень изменчиво. Оно зависит от высоты столба воздуха, его плотности и ускорения силы тяжести, которое изменяется в зависимости от географической широты и высоты над уровнем моря. Плотностью воздуха называется масса единицы его объёма. Плотность влажного и сухого воздуха заметно отличается только при высокой температуре и большой влажности. При понижении температуры плотность увеличивается, с высотой плотность воздуха уменьшается медленнее, чем давление. Плотность воздуха обычно непосредственно не измеряют, а вычисляют по уравнениям на основе измеренных величин температуры и давления. Косвенно плотность воздуха измеряют по торможению искусственных спутников Земли, а также из наблюдений за расплыванием искусственных облаков из паров натрия, создаваемых метеорологическими ракетами.

В Европе плотность воздуха у поверхности Земли равна 1,258 кг/м 3 , на высоте 5 км – 0,735, на высоте 20 км – 0,087, а на высоте 40 км – 0,004 кг/м 3 .

Чем короче столб воздуха, т.е. чем выше место, тем давление меньше. Но уменьшение плотности воздуха с высотой усложняет эту зависимость. Уравнение, выражающее закон изменения давления с высотой в покоящейся атмосфере, называется основным уравнением статики. Из него следует, что с увеличением высоты изменение давления отрицательное, и при подъёме на одну и ту же высоту падение давления тем больше, чем больше плотность воздуха и ускорение силы тяжести. Основная роль здесь принадлежит изменениям плотности воздуха. Из основного уравнения статики можно вычислить значение вертикального градиента давления, показывающего изменение давления при перемещении на единицу высоты, т.е. убывание давления на единицу расстояния по вертикали (мб/100 м). Градиент давления – это и есть сила, приводящая в движение воздух. Кроме силы градиента давления в атмосфере действуют силы инерции (сила Кориолиса и центробежная), а также сила трения. Все воздушные течения рассматриваются относительно Земли, которая вращается вокруг своей оси.

Пространственное распределение атмосферного давления называется барическим полем. Это система поверхностей равного давления, или изобарических поверхностей.

Вертикальный разрез изобарических поверхностей над циклоном (Н) и антициклоном (В).
Поверхности проведены через равные интервалы давления p.

Изобарические поверхности не могут быть параллельны друг другу и земной поверхности, т.к. температура и давление постоянно изменяются в горизонтальном направлении. Поэтому изобарические поверхности имеют разнообразный вид – от прогнутых вниз неглубоких «котловин» до выгнутых вверх растянутых «холмов».

При пересечении горизонтальной плоскостью изобарических поверхностей получаются кривые – изобары, т.е. линии, соединяющие пункты с одинаковыми значениями давления.

Карты изобар, которые строятся по результатам наблюдений в определённый момент времени, называются синоптическими картами. Карты изобар, составленные по средним многолетним данным за месяц, сезон, год, называются климатологическими.


Многолетние средние карты абсолютной топографии изобарической поверхности 500 мб за декабрь - февраль.
Высоты в геопотенциальных декаметрах.

На синоптических картах между изобарами принят интервал, равный 5 гектопаскалям (гПа).

На картах ограниченного района изобары могут обрываться, но на карте всего Земного шара каждая изобара, естественно, замкнута.

Но и на ограниченной карте часто бывают замкнутые изобары, ограничивающие участки низкого или высокого давления. Области с пониженным давлением в центре – это циклоны , а области с относительно повышенным давлением – это антициклоны .

Под циклоном понимают огромный вихрь в нижнем слое атмосферы, имеющий в центре пониженное атмосферное давление и восходящее движение воздушных масс. В циклоне давление возрастает от центра к периферии, а воздух движется против часовой стрелки в Северном полушарии и по часовой стрелке – в Южном полушарии. Восходящее движение воздуха приводит к образованию облачности и к осадкам. Из космоса циклоны выглядят в виде закручивающихся облачных спиралей в умеренных широтах.

Антициклон – это область высокого давления. Он возникает одновременно с развитием циклона и представляет собой вихрь с замкнутыми изобарами и самым высоким давлением в центре. Ветры в антициклоне дуют по часовой стрелке в Северном полушарии и против часовой стрелки – в Южном. В антициклоне всегда существует нисходящее движение воздуха, что препятствует возникновению мощной облачности и продолжительных осадков.

Таким образом, крупномасштабная циркуляция атмосферы в умеренных широтах постоянно сводится к образованию, развитию, движению, а затем к затуханию и исчезновению циклонов и антициклонов. Циклоны, возникающие на фронте, разделяющем тёплую и холодную воздушные массы, движутся в сторону полюсов, т.е. переносят тёплый воздух в полярные широты. Наоборот, антициклоны, возникающие в тылу циклонов в холодной воздушной массе, движутся в субтропические широты, перенося туда холодный воздух.

Над европейской территорией России в год возникают в среднем 75 циклонов. Диаметр циклона достигает 1000 км и более. В Европе за год бывает в среднем 36 антициклонов, часть из которых имеет давление в центре более 1050 гПа. Среднее давление в Северном полушарии на уровне моря равно 1013,7 гПа, а в Южном полушарии – 1011,7 гПа.

В январе в северных частях Атлантики и Тихого океана наблюдаются области низкого давления, названные Исландской и Алеутской депрессиями . Депрессии , или барические минимумы , характеризуются минимальными значениями давления – в среднем около 995 гПа.

В такой же период года над Канадой и Азией возникают области высокого давления, названные Канадским и Сибирским антициклонами. Самое высокое давление (1075–1085 гПа) регистрируется в Якутии и Красноярском крае, а минимальное – в тайфунах над Тихим океаном (880–875 гПа).

Депрессии наблюдаются в районах, где часто возникают циклоны, которые по мере продвижения на восток и северо-восток постепенно заполняются и уступают место антициклонам. Азиатский и Канадский антициклоны возникают благодаря наличию на этих широтах обширных континентов Евразии и Северной Америки. В этих районах зимой антициклоны преобладают над циклонами.

Летом над этими материками схема барического поля и циркуляции коренным образом меняется, и зона образования циклонов в Северном полушарии смещается в более высокие широты.

В умеренных широтах Южного полушария циклоны, возникающие над однородной поверхностью океанов, двигаясь на юго-восток, встречают льды Антарктиды и здесь застаиваются, имея в своих центрах низкое давление воздуха. Зимой и летом Антарктида окружена поясом низкого давления (985–990 гПа).

В субтропических широтах циркуляция атмосферы различна над океанами и в районах соприкосновения материков и океанов. Над Атлантическим и Тихим океанами в субтропиках обоих полушарий имеются области высокого давления: это Азорский и Южноатлантический субтропические антициклоны (или барические минимумы) в Атлантике и Гавайский и Южнотихоокеанский субтропические антициклоны в Тихом океане.

Наибольшее количество солнечного тепла постоянно получает экваториальная область. Поэтому в экваториальных широтах (до 10° северной и южной широты вдоль экватора) в течение круглого года удерживается пониженное атмосферное давление, а в тропических широтах, в полосе 30–40° с. и ю.ш. – повышенное, вследствие чего образуются постоянные потоки воздуха, направленные от тропиков к экватору. Эти воздушные потоки называются пассатами . Пассатные ветры дуют в течение всего года, меняя лишь в незначительных пределах свою интенсивность. Это самые устойчивые ветры на Земном шаре. Сила горизонтального барического градиента направляет потоки воздуха из областей повышенного давления в область пониженного давления в меридиональном направлении, т.е. на юг и на север. Примечание: горизонтальный барический градиент – это разность давлений, приходящаяся на единицу расстояния по нормали к изобаре.

Но меридиональное направление пассатов изменяется под действием двух сил инерции – отклоняющей силы вращения Земли (силы Кориолиса) и центробежной силы, а также под действием силы трения воздуха о земную поверхность. Сила Кориолиса воздействует на каждое тело, движущееся вдоль меридиана. Пусть 1 кг воздуха в Северном полушарии расположен на широте µ и начинает двигаться со скоростью V вдоль меридиана на север. Этот килограмм воздуха, как и любое тело на Земле, имеет линейную скорость вращения U=ωr , где ω – угловая скорость вращения Земли, а r – расстояние до оси вращения. По закону инерции этот килограмм воздуха будет сохранять линейную скорость U , которую он имел на широте µ . Продвигаясь на север, он окажется на более высоких широтах, где радиус вращения меньше и линейная скорость вращения Земли меньше. Таким образом это тело опередит неподвижные тела, расположенные на том же меридиане, но в более высоких широтах.

Для наблюдателя это будет выглядеть как отклонение этого тела вправо под действием какой-то силы. Эта сила и есть сила Кориолиса. По этой же логике килограмм воздуха в Южном полушарии отклонится влево от направления движения. Горизонтальная составляющая силы Кориолиса, действующая на 1 кг воздуха, равна СК=2wVsinY. Она и отклоняет воздух, действуя под прямым углом к вектору скорости V. В Северном полушарии она отклоняет этот вектор вправо, а в Южном полушарии – влево. Из формулы следует, что сила Кориолиса не возникает, если тело покоится, т.е. она действует только тогда, когда воздух движется. В атмосфере Земли величины горизонтального барического градиента и силы Кориолиса имеют один порядок, поэтому иногда они почти уравновешивают друг друга. В таких случаях движение воздуха почти прямолинейно, и он движется не вдоль градиента давления, а вдоль изобары или близко к ней.

Воздушные течения в атмосфере обычно имеют вихревой характер, поэтому в таком движении на каждую единицу массы воздуха действует центробежная сила P=V/R , где V - скорость ветра, а R – радиус кривизны траектории движения. В атмосфере эта сила всегда меньше силы барического градиента и поэтому остаётся, так сказать, силой «местного значения».

Что касается силы трения, возникающей между движущимся воздухом и поверхностью Земли, то она в определённой мере замедляет скорость ветра. Происходит это так: нижние объёмы воздуха, снизившие свою горизонтальную скорость из-за неровностей земной поверхности, переносятся с нижних уровней вверх. Таким образом трение о земную поверхность передаётся вверх, постепенно ослабевая. Замедление скорости ветра заметно в так называемом планетарном пограничном слое , составляющем 1,0 – 1,5 км. выше 1,5 км влияние трения незначительно, поэтому более высокие слои воздуха называют свободной атмосферой .

В экваториальной зоне линейная скорость вращения Земли наибольшая, соответственно здесь и сила Кориолиса наибольшая. Поэтому в тропическом поясе Северного полушария пассаты дуют почти всегда с северо-востока, а в Южном полушарии – с юго-востока.

Низкое давление в экваториальной зоне наблюдается постоянно, зимой и летом. Полоса низкого давления, охватывающая по экватору весь Земной шар, называется экваториальной ложбиной .

Набрав силу над океанами обоих полушарий, два пассатных потока, двигаясь навстречу друг другу, устремляются к центру экваториальной ложбины. На линии низкого давления они сталкиваются, образуя так называемую внутритропическую зону конвергенции (конвергенция означает «сходимость»). В результате этой «сходимости» происходит восходящее движение воздуха и его отток выше пассатов к субтропикам. Этот процесс и создаёт условия для существования зоны конвергенции постоянно, в течение года. Иначе сходящиеся воздушные потоки пассатов быстро заполнили бы ложбину.

Восходящие движения влажного тропического воздуха приводят к образованию мощного слоя кучево-дождевых облаков протяженностью 100–200 км, из которых обрушиваются тропические ливни. Таким образом получается, что внутритропическая зона конвергенции становится местом, где дожди выливаются из пара, собранного пассатами над океанами.

Так упрощенно, схематично выглядит картина циркуляции атмосферы в экваториальной зоне Земли.

Ветры, изменяющие своё направление по сезонам, называют муссонами . Арабское слово «маусин», означающее «время года», дало название этим устойчивым воздушным течениям.

Муссоны, в отличие от струйных течений, возникают в определённых районах Земли, где дважды в год преобладающие ветры движутся в противоположных направлениях, образуя летний и зимний муссоны. Летний муссон – это поток воздуха с океана на материк, зимний – с материка на океан. Известны тропические и внетропические муссоны. В Северо-Восточной Индии и Африке зимние тропические муссоны складываются с пассатами, а летние юго-западные полностью разрушают пассаты. Самые мощные тропические муссоны наблюдаются в северной части Индийского океана и в Южной Азии. Внетропические муссоны зарождаются в возникающих над континентом мощных устойчивых областях повышенного давления в зимнее время и пониженного – в летнее время.

Типичными в этом отношении являются районы русского Дальнего Востока, Китая, Японии. Например, Владивосток, лежащий на широте Сочи из-за действия внетропического муссона зимой холоднее Архангельска, а летом здесь часто бывают туманы, осадки, с моря поступает влажный и прохладный воздух.

Многие тропические страны Южной Азии получают влагу, приносимую в виде проливных дождей летним тропическим муссоном.

Любые ветры являются результатом взаимодействия различных физических факторов, возникающих в атмосфере над определенными географическими районами. К местным ветрам относятся бризы . Они появляются вблизи береговой черты морей и океанов и имеют суточную смену направления: днём они дуют с моря на сушу, а ночью с суши на море. Объясняется это явление разницей температур над морем и сушей в разное время суток. Теплоёмкость суши и моря разная. Днём в тёплую погоду солнечные лучи нагревают сушу быстрее, чем море, и давление над сушей уменьшается. Воздух начинает двигаться в сторону меньшего давления – дует морской бриз . Вечером всё происходит наоборот. Суша и воздух над ней излучают тепло быстрее, чем море, давление становится выше, чем над морем, и воздушные массы устремляются в сторону моря – дует береговой бриз . Бризы особенно отчётливы при тихой солнечной погоде, когда им ничего не мешает, т.е. не накладываются другие потоки воздуха, которые легко заглушают бризы. Скорость бриза редко бывает выше 5 м/с, но в тропиках, где разность температур поверхностей моря и суши значительна, бризы дуют иногда со скоростью 10 м/с. В умеренных широтах бризы проникают в глубь территории на 25–30 км.

Бризы, собственно говоря, те же муссоны, только в меньшем масштабе – они имеют суточный цикл и изменение направления зависит от смены ночи и дня, муссоны же имеют годовой цикл и меняют направление в зависимости от времени года.

Океанские течения, встречая на своём пути берега материков, разделяются на две ветви, направленные вдоль побережий материков к северу и югу. В Атлантическом океане южная ветвь образует Бразильское течение, омывающее берега Южной Америки, а северная ветвь – тёплый Гольфстрим, переходящая в Североатлантическое течение, и под названием Нордкапского течения достигающая Кольского полуострова.

Тихом океане северная ветвь экваториального течения переходит в Куро-Сиво.

Ранее мы уже упоминали о сезонном тёплом течении у берегов Эквадора, Перу и Северного Чили. Оно возникает обычно в декабре (не каждый год) и вызывает резкое снижение улова рыбы у берегов этих стран из-за того, что в тёплой воде очень мало планктона – основного пищевого ресурса для рыбы. Резкое повышение температуры прибрежных вод вызывает развитие кучево-дождевых облаков, из которых проливаются сильные дожди.

Рыбаки иронически назвали это тёплое течение Эль-Ниньо, что означает «рождественский подарок» (от исп. el ninjo – младенец, мальчик). Но мы хотим подчеркнуть не эмоциональное восприятие чилийскими и перуанскими рыбаками этого явления, а его физическую причину. Дело в том, что повышение температуры воды у берегов Южной Америки вызывается не только тёплым течением. Изменения в общую обстановку в системе «океан-атмосфера» на огромных просторах Тихого океана вносит и атмосферный процесс, названный «Южным колебанием ». Этот процесс, взаимодействуя с течениями, определяет все физические явления, происходящие в тропиках. Всё это подтверждает, что циркуляция воздушных масс в атмосфере, особенно над поверхностью Мирового океана, представляет собой сложный, многомерный процесс. Но при всей сложности, подвижности и изменчивости воздушных течений всё же существуют определённые закономерности, в силу которых в тех или иных районах Земли из года в год повторяются основные крупномасштабные, а также местные процессы циркуляции атмосферы.

В заключение главы приведём некоторые примеры использования энергии ветра. Энергию ветра люди используют с незапамятных времён, с тех пор, как они научились ходить в море под парусом. Потом появились ветряные мельницы, а позднее – ветровые двигатели – источники электроэнергии. Ветер – вечный источник энергии, запасы которой неисчислимы. К сожалению, использование ветра в качестве источника электроэнергии представляет большую сложность из-за изменчивости его скорости и направления. Однако с помощью ветряных электродвигателей стало возможным достаточно эффективное использование энергии ветра. Лопасти ветряка заставляют его почти всегда «держать нос» по ветру. Когда ветер имеет достаточную силу, ток идёт непосредственно к потребителям: на освещение, к холодильным установкам, приборам различного назначения и на зарядку аккумуляторов. Когда ветер стихает, аккумуляторы отдают в сеть накопленную электроэнергию.

На научных станциях в Арктике и Антарктике электроэнергия ветровых двигателей даёт свет и тепло, обеспечивает работу радиостанций и других потребителей электроэнергии. Конечно, на каждой научной станции имеются дизель-генераторы, для которых нужно иметь постоянный запас топлива.

Самые первые мореплаватели использовали силу ветра стихийно, без учёта системы ветров и океанских течений. Они просто ничего не знали о существовании такой системы. Знания о ветрах и течениях накапливались столетиями и даже тысячелетиями.

Один из современников китайский мореплаватель Чжэн Хэ в течение 1405-1433 гг. возглавил несколько экспедиций, которые проходили так называемым Великим муссонным путём от устья реки Янцзы к Индии и восточным берегам Африки. Сохранились сведения о масштабах первой из этих экспедиций. Она состояла из 62 кораблей с 27800 участниками. Для плавания экспедиций китайцы использовали свои знания закономерностей муссонных ветров. Из Китая они уходили в море в конце ноября – начале декабря, когда дует северо-восточный зимний муссон. Попутный ветер помогал им достигать Индии и Восточной Африки. Возвращались они в Китай в мае – июне, когда устанавливался летний юго-западный муссон, который в Южно-Китайском море становился южным.

Возьмём пример из более близкого к нам времени. Речь пойдёт о путешествиях знаменитого норвежского учёного Тура Хейердала. С помощью ветра, а точнее, с помощью пассатов Хейердал смог доказать научную ценность двух своих гипотез. Первая гипотеза заключалась в том, что острова Полинезии в Тихом океане могли быть, по мнению Хейердала, заселены когда-то в прошлом выходцами из Южной Америки, которые пересекли значительную часть Тихого океана на своих примитивных плавсредствах. Эти плавсредства представляли собой плоты из бальсового дерева, которое примечательно тем, что после длительного пребывания в воде оно не меняет свою плотность, а потому не тонет.

Жители Перу пользовались такими плотами в течение тысячелетий, ещё до империи инков. Тур Хейердал в 1947 г. связал плот из больших бальсовых брёвен и назвал его «Кон-Тики», что означает Солнце-Тики – божество предков полинезийцев. Взяв «на борт» своего плота пятерых любителей приключений, он отправился в путь под парусом из Кальяо (Перу) в Полинезию. В начале плавания плот несло Перуанское течение и юго-восточный пассат, а затем за работу принялся восточный пассат Тихого океана, который почти три месяца без перерыва дул исправно на запад, и через 101 сутки Кон-Тики благополучно прибыл на один из островов архипелага Туамоту (ныне Французская Полинезия).

Вторая гипотеза Хейердала состояла в том, что он считал вполне возможным, что культура ольмеков, ацтеков, майя и других племён Центральной Америки была перенесена из Древнего Египта. Это было возможным, по мнению учёного, потому, что когда-то в древности люди плавали через Атлантический океан на папирусных лодках. Доказать состоятельность этой гипотезы Хейердалу помогли также пассаты.

Вместе с группой спутников-единомышленников он совершил два плавания на папирусных лодках «Ра-1» и «Ра-2». Первая лодка («Ра-1») развалилась, не дойдя до американского берега нескольких десятков километров. Экипаж подвергся серьёзной опасности, но всё обошлось благополучно. Лодку для второго плавания («Ра-2») вязали «специалисты высшего класса» – индейцы из Центральных Анд. Выйдя из порта Сафи (Марокко), папирусная лодка «Ра-2» через 56 суток пересекла Атлантический океан и достигла острова Барбадос (примерно в 300–350 км от побережья Венесуэлы), преодолев 6100 км пути. Сначала лодку подгонял северо-восточный пассат, а начиная с середины океана – восточный пассат.

Научность второй гипотезы Хейердала была доказана. Но было доказано и другое: несмотря на благополучный исход плавания, лодка, связанная из пучков папируса, камыша, тростника или другого водного растения, для плавания в океане не годится. Подобный «кораблестроительный материал» не должен использоваться, т.к. он быстро намокает и погружается в воду. Ну, а если найдутся ещё любители, одержимые желанием переплыть океан на каких-нибудь экзотических плавсредствах, то пусть они имеют в виду, что плот из бальсового дерева надёжнее, чем папирусная лодка, а также то, что такое путешествие всегда и в любом случае опасно .

© Владимир Каланов,
"Знания-сила"

Основную площадь внетропических широт занимают умеренные пояса. Именно в них протекают атмосферные процессы, играющие ведущую роль в циркуляции атмосферы, формировании погоды и климата этих и сопредельных широт. Умеренные широты характеризуются западным переносом воздуха во всей толще атмосферы, обусловленным термическими и динамическими причинами. Исключение составляют восточные окраины материков, где развит муссонный перенос воздушных масс.

В нижней тропосфере основу западного переноса составляют западные ветры внешних полярных периферий субтропических океанических барических максимумов. Последние являются как бы «ветроразделами» Земли, от которых ветры оттекают и к экватору (пассаты), и к умеренным широтам. Западные ветры лучше выражены и наиболее устойчивы в южном полушарии. Там, южнее субтропического пояса высокого давления, ярко выраженного зимой, но сохраняющегося в виде почти непрерывной полосы даже летом, находится постоянный пояс пониженного давления вокруг Антарктиды. В северном полушарии существенная неоднородность подстилающей поверхности (материки и океаны), значительные сезонные контрасты всех метеорологических характеристик и быстрая их изменчивость в

меридиональном направлении приводят к большой неустойчивости атмосферных процессов. Поэтому западные ветры здесь в чистом виде присущи океанам и западным половинам материков и выявляются лишь из статистического анализа многолетних данных.

Циклоны и антициклоны. Характерной особенностью умеренных широт является разнообразие воздушных масс: арктических (антарктических), полярных (они господствующие), тропических, как морских, так и континентальных, смещающихся с запада на восток и трансформирующихся при этом. Между различными воздушными массами постоянно возникают и также меняют свое положение атмосферные фронты, на которых образуются неустойчивые волны, дающие начало циклонам и антициклонам умеренных широт – крупномасштабным атмосферным вихрям с разными системами ветров, осложняющими западный перенос воздуха. Их постоянное возникновение, развитие, перемещение в восточном направлении и разрушение – основная особенность атмосферной циркуляции умеренных и сопредельных широт, которую называют циклонической деятельностью.

Рис. 65. Схема развития фронтального циклона (по С. П. Хромову)

Циклоны умеренных широт – огромные плоские восходящие воздушные вихри с системой ветров, дующих в северном полушарии против часовой стрелки, а в южном – по часовой стрелке и сходящихся к их центру. У земной поверхности они характеризуются пониженным давлением.

Циклоны – плоские вихри: их горизонтальные размеры достигают 1000 – 3000 км (в диаметре), тогда как вертикальные – от 2 до 10 км. Давление в циклонах колеблется от 1000 до 950 мб, ветры могут достигать скорости 25 м/с и более.

В своем развитии циклоны проходят несколько стадий – от зарождения до заполнения. Своим образованием циклоны обязаны волновым возмущениям атмосферы на фронтах в условиях вращающейся Земли, вследствие чего заметную роль в этом процессе играет сила Кориолиса. На поверхности раздела разных по температуре воздушных масс теплый воздух начинает внедряться в область холодного воздуха и отклоняться от субширотного направления в высокие широты. Нарушение равновесия вынуждает холодных воздух в тыловой части волны внедряться в низкие широты. Развивается циклоническое движение воздуха, и возникает циклонический изгиб фронта – огромная волна, которая начинает двигаться с запада на восток (рис. 65).

Различные значения барической ступени в холодном и теплом воздухе обусловливают уже на начальной стадии развития циклона низкое давление в его теплой части, из-за чего теплый воздух начинает подниматься и скользить по фронтальной поверхности в передней части волны. Такова первая стадия развития циклона – стадия волны.

Если длина вновь возникшей волны 1000 км и больше, то она оказывается неустойчивой в пространстве и продолжает свое развитие; при этом циклон смещается на восток со скоростью до 100 км в сутки. Давление продолжает понижаться, ветры – усиливаться, а амплитуда волны – увеличиваться, причем понижение давления распространяется вверх до высоты 5–6 км. Наступает вторая стадия молодого циклона, при которой он обычно оконтуривается на приземных картах давления несколькими изобарами.

При продвижении теплого воздуха в высокие широты формируется теплый фронт, при перемещении холодного воздуха в сторону тропиков – холодный фронт. Оба эти фронта сопрягаются в центре циклона и являются частями единого целого, подчеркивая волновое возмущение атмосферы. На космических снимках фронты в циклонах выражены в виде сплошной широкой полосы облачности в зоне теплого фронта в передней части циклона и в центре и более узкой полосы в зоне холодного фронта в тыловой части циклона.

В молодом циклоне выделяются различные части: передний край перед теплым фронтом, теплый сектор между двумя фронтами, тыловая часть – за холодным фронтом (рис. 66). На главных полярных фронтах теплый сектор образуется из тропического воздуха, а остальная часть циклона – из полярного воздуха. На арктическом (антарктическом) фронте теплый сектор циклона образуется из полярного воздуха, а остальная часть циклона – из арктического (антарктического) воздуха.

Холодный фронт всегда движется быстрее теплого, поэтому теплый сектор циклона постепенно сокращается. Когда холодный фронт догоняет теплый и смыкается с ним, образуется фронт окклюзии. При этом теплый воздух вытесняется вверх и закручивается в виде спирали против часовой стрелки в северном полушарии и по часовой – в южном. Циклон достигает третьей стадии своего развития – окклюдирования. При этом давление в циклоне падает до 980 – 960 гПа, замкнутая циркуляция распространяется до высот более 5 км, диаметр достигает 1,5 – 2 тыс. км.

Затем наступает четвертая (заключительная) стадия развития циклона – его заполнение. Фронт окклюзии постепенно размывается, теплый воздух окончательно оттесняется вверх и при этом адиабатически охлаждается. Облачные системы заполняющихся циклонов приобретают вид закрученных спиралей. Температурные контрасты в циклоне исчезают, он становится холодным по всей своей площади и объему, замедляет движение и окончательно заполняется. Вся жизнь циклона от зарождения до заполнения длится 5–7 дней.

Рис. 66. Циклон умеренных широт в плане и его профили. Названия облаков указаны в таблице 2

С циклонами связаны пасмурная погода, прохладная летом и теплая зимой, и осадки.

С развитием циклонической деятельности связано также возникновение и развитие фронтальных антициклонов. Антициклоны – это нисходящие атмосферные вихри, соизмеримые по размерам с циклонами, с приземной областью высокого давления, с антициклонической системой ветров от центра к периферии по часовой стрелке в северном полушарии и против часовой – в южном. Возникновение и развитие антициклонов тесно связано с развитием циклонов – это единый процесс эволюции фронтальной зоны. Иными словами, циклоны и антициклоны – парагенетические (т. е. тесно связанные между собой) образования.

Антициклоны образуются в тылу холодного фронта молодого циклона в холодном воздухе и тоже проходят ряд стадий. Сначала возникает молодой низкий холодный антициклон, очень подвижный, смещающийся вслед за циклоном. Потом наступает стадия максимального развития: при этом антициклон становится высоким и малоподвижным. В нем образуется слой инверсии, выше которого воздух довольно теплый за счет адиабатического нагревания при опускании, а внизу холоднее из-за эффективного излучения, особенно зимой над сушей. В этой стадии антициклон называют блокирующим, поскольку он препятствует западному переносу воздушных масс вплоть до больших высот. Наконец, наступает заключительная стадия разрушения, когда опускание воздуха прекращается. Хотя антициклоны образуются во фронтальных зонах, фронт через них не проходит, а окаймляет их с трех сторон. С антициклонами связаны безоблачная сухая погода, жаркая летом, морозная зимой.

Рис. 67. Серия циклонов на климатическом фронте, находящихся на разных стадиях развития. 1–4 – стадии развития циклонов

Циклоны и антициклоны возникают над зонами контрастов температур и давлений. Поэтому на земном шаре внетропическая циклоническая деятельность осуществляется преимущественно на главных арктическом (антарктическом) и полярных фронтах, а наиболее активными местами циклогенеза являются зоны встреч воздуха над холодными и теплыми океаническими течениями. В северном полушарии это зоны конвергенции течений Лабрадорского и Гольфстрима, Курильского и Куросио. В южном полушарии основным местом циклогенеза являются «ревущие» (40 – 50°) широты, где встречаются теплые и холодные воздушные массы, особенно там, где в течение Западных ветров вливаются теплые течения вдоль западных окраин океанов.

Вместе с тем зимой, когда контрасты температур и других свойств различных воздушных масс максимальны, циклоническая деятельность проявляется и в других местах. В частности, активный циклогенез происходит в это время над Северным, Средиземным и Черным морями, на внутримассовом полярном фронте между теплым морским и холодным континентальным полярным воздухом.

Циклоны и антициклоны возникают на климатических фронтах один за другим, т. е. последовательно во времени. Наиболее типичной является картина, когда на арктическом или полярном фронте последовательно расположены серии разновозрастных циклонических вихрей, находящихся на разных стадиях своего развития – от самых молодых на западных краях фронтов до заполняющихся на восточных (рис. 67). Так же последовательно возникают антициклоны.

И циклоны, и антициклоны (точнее, их центры) перемещаются в умеренных широтах в направлении общего переноса воздуха с запада на восток, т. е. под перемещением циклонов и антициклонов подразумевается движение их как единой системы (при этом ветры в разных частях этих вихрей могут иметь различное направление). Однако при движении на восток циклоны уклоняются к высоким широтам, а антициклоны – в сторону тропиков.

Поступательное движение циклонов в северном полушарии на северо-восток (см. рис. 67) обусловлено отчасти тем, что ветры в них, дующие против часовой стрелки, на южных перифериях усиливаются западным переносом и как бы оттесняют циклоны к северу (рис. 68, а). В южном полушарии циклоны смещаются к юго-востоку. Существует также мнение, что отклонению циклонов к высоким широтам способствует вторжение теплого воздуха в теплые сектора соответственно с юга в северном полушарии и с севера в южном.

Развиваясь и перемещаясь, циклоны в конце концов достигают заключительных стадий, нагоняют друг друга и становятся малоподвижными. Циклоны при этом образуют одну общую глубокую обширную область низкого давления в субарктических широтах, которую называют центральным циклоном. В северном полушарии они образуются на севере Атлантического и Тихого океанов, где на климатических картах отмечаются такие центры действия атмосферы, как Исландский и Алеутский минимумы. Активная циклоническая деятельность зимой в умеренных широтах и на арктическом фронте в районе Баренцева и Карского морей формирует там глубокую барическую ложбину, протягивающуюся от Исландского минимума. Вторая аналогичная ложбина простирается от него до моря Баффина. Оси ложбин совпадают с теплыми течениями.

Циклоны, возникающие на внутримассовом полярном фронте между атлантическим морским и континентальным полярным воздухом, смещаются через Центральную Европу на Восточно-Европейскую равнину и далее – на север Западной Сибири. Путь зимних циклонов Средиземноморской ветви полярного фронта лежит через Балканский полуостров, Украину, центральные районы европейской России и далее на северо-восток. С этими циклонами зимой связаны оттепели и выпадение большого количества осадков. На степень проявления циклогенеза отчасти влияют и орографические особенности материков: так, в Северной Америке некоторой преградой на пути северотихоокеанских циклонов к востоку служат Кордильеры.

В южном полушарии циклоны образуют пояс низкого давления вокруг Антарктиды с цепочкой обособленных внутри него барических минимумов.

Таким образом, барические минимумы субполярных широт, особенно хорошо выраженные зимой над океанами и совпадающие с районами положительных температурных аномалий, формируются и поддерживаются приходящими сюда циклонами.

Отклонение антициклонов из умеренных широт к тропикам можно объяснить тем, что ветры в них, дующие по часовой стрелке в северном полушарии и против часовой стрелки в южном, усиливаются западным переносом на их полярных окраинах, что придает движению антициклонов меридиальную составляющую (см. рис. 68, б). В северном полушарии антициклоны смещаются к юго-востоку, в южном – к северо-востоку. Замыкающие антициклоны, вторгаясь из умеренных широт в субтропические, постоянно регенерируют и поддерживают там области повышенного давления – океанические субтропические барические максимумы: Северо-Атлантический, Северо-Тихоокеанский, Южно-Атлантический, Южно-Тихоокеанский и Южно-Индийский. Таким образом, все центры действия атмосферы – постоянные и сезонные барические минимумы и максимумы имеют комплексное – и термическое, и динамическое происхождение.

Благодаря меридиональной составляющей фронтальные циклоны и антициклоны участвуют в междуширотном обмене воздуха от субтропиков до субполярных широт. В этом обмене немаловажную роль играют и ветры внутри циклонов и антициклонов. По тыловой западной периферии антициклонов и передней восточной периферии циклонов они переносят теплые массы воздуха от низких широт в сторону полюсов. По тыловой западной периферии циклонов и передней восточной периферии антициклонов холодные массы воздуха вторгаются вплоть до тропиков.

Так сами циклоны и антициклоны, наряду с ветрами по их периферии, осуществляют обмен воздушными массами в меридиональном направлении. Но зональная составляющая все же преобладает, что выражается в перемещении циклонов и антициклонов в умеренных и сопредельных широтах с запада на восток.

Иная – муссонная циркуляция возникает во внетропических (прежде всего в умеренных и субтропических) широтах на восточных побережьях материков. Здесь четко выражено резкое изменение преобладающего направления ветров зимой и летом на противоположное, что связано с различным сезонным нагреванием суши и океана и перестройкой вслед за температурой давления и изменения положения центров действия атмосферы в этих широтах. Подобные ветры называются муссонами внетропических широт (см. рис. 64). Рассмотрим их на примере северного полушария. Летом циркуляция здесь определяется субтропическими океаническими максимумами, смещающимися к северу, и барическими минимумами над континентами. По западным перифериям Северо-Атлантического и Северо-Тихоокеанского максимумов относительно теплые морские тропические и полярные воздушные массы перемещаются с юга и юго-востока на нагретые континенты – Азию и Северную Америку. Это перемещение осуществляется в виде серий циклонов, зарождающихся на контакте морского и континентального воздуха и следующих по направлению воздушных потоков к северу и северо-западу. С циклонами на континенты приходят массы морского тропического или полярного (в зависимости от широты места) воздуха, насыщенного влагой, которая изливается в виде обильных муссонных дождей, особенно на восточных склонах гор и их предгорьях.

Зимой в этих районах циркуляция воздушных масс определяется сезонными континентальными Канадским и Азиатским максимумами и ярко выраженными Исландским и Алеутским минимумами над океанами. Устойчивые северо-западные ветры приносят с материков на их восточные побережья сухой и холодный континентальный полярный воздух, снижая температуру зимой нередко до отрицательных

значений даже на Великой Китайской равнине. Китайские метеорологи установили, что между зонами экваториально-тропических муссонов (с повторяемостью более 60%) и вне-тропических муссонов (с повторяемостью менее 40%) существует узкая полоса без муссонов. Это свидетельствует о различной природе этих муссонных полей.

В Северной Америке на восточных побережьях внетропических широт муссонная циркуляция ослаблена и муссонность климата почти не выражена.

Своеобразна атмосферная циркуляция в высоких широтах. Здесь проявляется ее термическая составляющая, которая выражается в преобладании ветров восточных направлений. Особенно хорошо выражены юго-восточные ветры по окраинам Антарктиды; там они усиливаются стоковым эффектом (стеканием холодного воздуха вниз с высокого ледникового щита) и устойчиво дуют со скоростью до 20 м/с. В северном полушарии устойчивые северо-восточные ветры отмечаются лишь по южной окраине Гренландии, где они дуют из Гренландского максимума в Исландский минимум. В высоких широтах Азии и Северной Америки в циркуляции атмосферы отмечена муссонная тенденция (повторяемость ветров – менее 40%). Зимой там дуют холодные и сухие южные ветры из Азиатского и Канадского максимумов. Летом направление ветров меняется на обратное – они дуют с холодного Северного Ледовитого океана на прогретую сушу в направлении термических депрессий над Сибирью и Северной Канадой. Однако эти ветры не дают муссонного климатического эффекта, в частности обилия и сезонности в количестве осадков.

Внетропические муссоны занимают важное место в системе обшей циркуляции атмосферы и в районах их устойчивого развития оказывают большое влияние на климат.

Задания для проведения школьного этапа Всероссийской олимпиады школьников по географии в 2017 – 2018 уч. году. 9 класс. Максимальное количество баллов – 45 . Время выполнения работы – 3 академических часа. Тестовый тур. Время выполнения — 45 минут За каждый правильный ответ 1 балл. Всего 15 баллов.

Вариант 1.

1. Выберите правильное соответствие между путешественником и объектом его исследования:

А. Крашенинников- Таймыр

Б.Челюскин- Камчатка

В. Чириков- Берингов пролив

Г. Вилькицкий- Земля Франца- Иосифа

2. О каком полезном ископаемом мы говорим, когда называем следующие бассейны- Кузбасс, Печорский, Ленский?

А. Железная руда

Г. Фосфориты

3. Выберите правильное утверждение о циркуляции воздушных масс по сезонам в субтропическом климатическом поясе:

А. Зимой и летом господствуют тропические воздушные массы

Б. Зимой- умеренные воздушные массы, летом- тропические

В. Зимой- тропические воздушные массы, летом- умеренные

Г. Зимой- тропические воздушные массы, летом- экваториальные

4. Подумайте, какой известный физико- географический объект объединяет такие страны как Россия, Туркмения, Иран, Казахстан, Азербайджан:

А. Уральские горы

Б. Кавказские горы

В. Каспийское море

Г. Прикаспийская низменность

5. Выберите из предложенных регионов регион с самой высокой лесистостью территории:

А. Московская область

Б. Калининградская область

В. Оренбургская область

Г. Республика Коми

6. Какое опасное природное явление невозможно в Москве?

А. Засуха

Б. Оползень

Г. Наводнение

7. Самая низкая температура воздуха, зафиксированная на Земле, составляет -89,2 °С. Где она наблюдалась?

А. Оймякон (Россия)

Б. Северный полюс

В. Антарктида (станция Восток)

Г. Остров Гренландия

8. Линии тропиков и полярных кругов являются границами…

А. Климатических поясов

Б. Часовых поясов

В. Поясов освещенности

Г. Природных зон

9. Выберите пару государств, в которой присутствуют государства, с которыми Россия имеет наименее протяженную сухопутную границу:

А. Литва и Польша

Б. Казахстан и Китай

В. КНДР и Норвегия

Г. Грузия и Азербайджан

10. Выберите правильное соответствие « природная зона- почвы»:

А. Смешанные леса — подзолистые

Б. Субтропические леса — красно- бурые почвы

В. Широколиственные леса — подзолистые

Г. Степь — черноземы

11. Какой буквой на карте России обозначено Карское море?

1.А 2.B 3. С 4.D

12. Расположите регионы России в той последовательности, в которой их жители встречают Новый год. Запишите получившуюся последовательность букв.

А. Ненецкий АО

Б. Республика Саха

В. Калининградская область

13. Выберите правильное сочетание: рельефообразующий процесс – форма рельефа – географический объект:

А. Деятельность текучих вод – овраги – Северо – Сибирская низменность

Б. Деятельность ледника – морена – Валдайская возвышенность

В. Деятельность ветра – балки – Прикаспийская низменность

Г. Деятельность моря – аккумулятивная равнина – Приволжская возвышенность

14.Какой из регионов, обозначенных буквами на карте России, имеет наименьшую среднюю плотность насе­ления?

1.А 2. В 3. С 4. D

15. Установите соответствие:

Озеро Характеристика

А. Ладожское 1. « Славное море, священный…» (из песни)

Б. Онежское 2. Раньше имело название «Хвалынское»

В. Каспийское 3. Озеро на котором находится заповедник

Г. Байкал «Кижи»

4. Озеро, по которому проходила « Дорога

Теоретический тур.

Время выполнения – 1, 5 часа.

Всего баллов – 30 .

1. Выделите из предлагаемого списка пять животных, которые могут « встретиться друг с другом» в однородных природных условиях: (5 баллов)

Бурый медведь, белый медведь, пингвин, морж, тигр, лев, пятнистый олень, соболь, бурундук.

2. Выберите из списка топонимы, относящиеся к России и распределите их по группам:

(7 баллов)

Абакан, Баскунчак, Гиндукуш, Днепр, Ереван, Женева, Иртыш, Колыма, Лена, Малоземельская тундра, Нарьян – Мар, Общий Сырт, По, Рудольфа, Саяны, Тана, Уссури, Флорида, Хибины, Цимлянское, Чудское, Шпицберген, Эри, Юкатан, Якутск.

3. Узнайте по описанию субъект Российской Федерации и ответьте на дополнительные вопросы. (7 баллов)

Территория республики с севера, востока и юга охватывает крупнейшее озеро Сибири и самое глубокое в мире. Титульный народ этнически обособился от монголов еще в 17 веке. Основные отрасли: горнодобывающая (вольфрам, молибден), машиностроение, лесная промышленность и овцеводство. Назовите:

Республику.

Основную площадь внетропических широт занимают умеренные пояса. Именно в них протекают атмосферные процессы, играющие ведущую роль в циркуляции атмосферы, формировании погоды и климата этих и сопредельных широт. Умеренные широты характеризуются западным переносом воздуха во всей толще атмосферы, обусловленным термическими и динамическими причинами. Исключение составляют восточные окраины материков, где развит муссонный перенос воздушных масс.

В нижней тропосфере основу западного переноса составляют западные ветры внешних полярных периферий субтропических океанических барических максимумов. Последние являются как бы «ветроразделами» Земли, от которых ветры оттекают и к экватору (пассаты), и к умеренным широтам. Западные ветры лучше выражены и наиболее устойчивы в южном полушарии. Там, южнее субтропического пояса высокого давления, ярко выраженного зимой, но сохраняющегося в виде почти непрерывной полосы даже летом, находится постоянный пояс пониженного давления вокруг Антарктиды. В северном полушарии существенная неоднородность подстилающей поверхности (материки и океаны), значительные сезонные контрасты всех метеорологических характеристик и быстрая их изменчивость в

меридиональном направлении приводят к большой неустойчивости атмосферных процессов. Поэтому западные ветры здесь в чистом виде присущи океанам и западным половинам материков и выявляются лишь из статистического анализа многолетних данных.

Циклоны и антициклоны. Характерной особенностью умеренных широт является разнообразие воздушных масс: арктических (антарктических), полярных (они господствующие), тропических, как морских, так и континентальных, смещающихся с запада на восток и трансформирующихся при этом. Между различными воздушными массами постоянно возникают и также меняют свое положение атмосферные фронты, на которых образуются неустойчивые волны, дающие начало циклонам и антициклонам умеренных широт – крупномасштабным атмосферным вихрям с разными системами ветров, осложняющими западный перенос воздуха. Их постоянное возникновение, развитие, перемещение в восточном направлении и разрушение – основная особенность атмосферной циркуляции умеренных и сопредельных широт, которую называют циклонической деятельностью.

Рис. 65. Схема развития фронтального циклона (по С. П. Хромову)

Циклоны умеренных широт – огромные плоские восходящие воздушные вихри с системой ветров, дующих в северном полушарии против часовой стрелки, а в южном – по часовой стрелке и сходящихся к их центру. У земной поверхности они характеризуются пониженным давлением.

Циклоны – плоские вихри: их горизонтальные размеры достигают 1000 – 3000 км (в диаметре), тогда как вертикальные – от 2 до 10 км. Давление в циклонах колеблется от 1000 до 950 мб, ветры могут достигать скорости 25 м/с и более.

В своем развитии циклоны проходят несколько стадий – от зарождения до заполнения. Своим образованием циклоны обязаны волновым возмущениям атмосферы на фронтах в условиях вращающейся Земли, вследствие чего заметную роль в этом процессе играет сила Кориолиса. На поверхности раздела разных по температуре воздушных масс теплый воздух начинает внедряться в область холодного воздуха и отклоняться от субширотного направления в высокие широты. Нарушение равновесия вынуждает холодных воздух в тыловой части волны внедряться в низкие широты. Развивается циклоническое движение воздуха, и возникает циклонический изгиб фронта – огромная волна, которая начинает двигаться с запада на восток (рис. 65).

Различные значения барической ступени в холодном и теплом воздухе обусловливают уже на начальной стадии развития циклона низкое давление в его теплой части, из-за чего теплый воздух начинает подниматься и скользить по фронтальной поверхности в передней части волны. Такова первая стадия развития циклона – стадия волны.

Если длина вновь возникшей волны 1000 км и больше, то она оказывается неустойчивой в пространстве и продолжает свое развитие; при этом циклон смещается на восток со скоростью до 100 км в сутки. Давление продолжает понижаться, ветры – усиливаться, а амплитуда волны – увеличиваться, причем понижение давления распространяется вверх до высоты 5–6 км. Наступает вторая стадия молодого циклона, при которой он обычно оконтуривается на приземных картах давления несколькими изобарами.

При продвижении теплого воздуха в высокие широты формируется теплый фронт, при перемещении холодного воздуха в сторону тропиков – холодный фронт. Оба эти фронта сопрягаются в центре циклона и являются частями единого целого, подчеркивая волновое возмущение атмосферы. На космических снимках фронты в циклонах выражены в виде сплошной широкой полосы облачности в зоне теплого фронта в передней части циклона и в центре и более узкой полосы в зоне холодного фронта в тыловой части циклона.

В молодом циклоне выделяются различные части: передний край перед теплым фронтом, теплый сектор между двумя фронтами, тыловая часть – за холодным фронтом (рис. 66). На главных полярных фронтах теплый сектор образуется из тропического воздуха, а остальная часть циклона – из полярного воздуха. На арктическом (антарктическом) фронте теплый сектор циклона образуется из полярного воздуха, а остальная часть циклона – из арктического (антарктического) воздуха.

Холодный фронт всегда движется быстрее теплого, поэтому теплый сектор циклона постепенно сокращается. Когда холодный фронт догоняет теплый и смыкается с ним, образуется фронт окклюзии. При этом теплый воздух вытесняется вверх и закручивается в виде спирали против часовой стрелки в северном полушарии и по часовой – в южном. Циклон достигает третьей стадии своего развития – окклюдирования. При этом давление в циклоне падает до 980 – 960 гПа, замкнутая циркуляция распространяется до высот более 5 км, диаметр достигает 1,5 – 2 тыс. км.

Затем наступает четвертая (заключительная) стадия развития циклона – его заполнение. Фронт окклюзии постепенно размывается, теплый воздух окончательно оттесняется вверх и при этом адиабатически охлаждается. Облачные системы заполняющихся циклонов приобретают вид закрученных спиралей. Температурные контрасты в циклоне исчезают, он становится холодным по всей своей площади и объему, замедляет движение и окончательно заполняется. Вся жизнь циклона от зарождения до заполнения длится 5–7 дней.

Рис. 66. Циклон умеренных широт в плане и его профили. Названия облаков указаны в таблице 2

С циклонами связаны пасмурная погода, прохладная летом и теплая зимой, и осадки.

С развитием циклонической деятельности связано также возникновение и развитие фронтальных антициклонов. Антициклоны – это нисходящие атмосферные вихри, соизмеримые по размерам с циклонами, с приземной областью высокого давления, с антициклонической системой ветров от центра к периферии по часовой стрелке в северном полушарии и против часовой – в южном. Возникновение и развитие антициклонов тесно связано с развитием циклонов – это единый процесс эволюции фронтальной зоны. Иными словами, циклоны и антициклоны – парагенетические (т. е. тесно связанные между собой) образования.

Антициклоны образуются в тылу холодного фронта молодого циклона в холодном воздухе и тоже проходят ряд стадий. Сначала возникает молодой низкий холодный антициклон, очень подвижный, смещающийся вслед за циклоном. Потом наступает стадия максимального развития: при этом антициклон становится высоким и малоподвижным. В нем образуется слой инверсии, выше которого воздух довольно теплый за счет адиабатического нагревания при опускании, а внизу холоднее из-за эффективного излучения, особенно зимой над сушей. В этой стадии антициклон называют блокирующим, поскольку он препятствует западному переносу воздушных масс вплоть до больших высот. Наконец, наступает заключительная стадия разрушения, когда опускание воздуха прекращается. Хотя антициклоны образуются во фронтальных зонах, фронт через них не проходит, а окаймляет их с трех сторон. С антициклонами связаны безоблачная сухая погода, жаркая летом, морозная зимой.

Рис. 67. Серия циклонов на климатическом фронте, находящихся на разных стадиях развития. 1–4 – стадии развития циклонов

Циклоны и антициклоны возникают над зонами контрастов температур и давлений. Поэтому на земном шаре внетропическая циклоническая деятельность осуществляется преимущественно на главных арктическом (антарктическом) и полярных фронтах, а наиболее активными местами циклогенеза являются зоны встреч воздуха над холодными и теплыми океаническими течениями. В северном полушарии это зоны конвергенции течений Лабрадорского и Гольфстрима, Курильского и Куросио. В южном полушарии основным местом циклогенеза являются «ревущие» (40 – 50°) широты, где встречаются теплые и холодные воздушные массы, особенно там, где в течение Западных ветров вливаются теплые течения вдоль западных окраин океанов.

Вместе с тем зимой, когда контрасты температур и других свойств различных воздушных масс максимальны, циклоническая деятельность проявляется и в других местах. В частности, активный циклогенез происходит в это время над Северным, Средиземным и Черным морями, на внутримассовом полярном фронте между теплым морским и холодным континентальным полярным воздухом.

Циклоны и антициклоны возникают на климатических фронтах один за другим, т. е. последовательно во времени. Наиболее типичной является картина, когда на арктическом или полярном фронте последовательно расположены серии разновозрастных циклонических вихрей, находящихся на разных стадиях своего развития – от самых молодых на западных краях фронтов до заполняющихся на восточных (рис. 67). Так же последовательно возникают антициклоны.

И циклоны, и антициклоны (точнее, их центры) перемещаются в умеренных широтах в направлении общего переноса воздуха с запада на восток, т. е. под перемещением циклонов и антициклонов подразумевается движение их как единой системы (при этом ветры в разных частях этих вихрей могут иметь различное направление). Однако при движении на восток циклоны уклоняются к высоким широтам, а антициклоны – в сторону тропиков.

Поступательное движение циклонов в северном полушарии на северо-восток (см. рис. 67) обусловлено отчасти тем, что ветры в них, дующие против часовой стрелки, на южных перифериях усиливаются западным переносом и как бы оттесняют циклоны к северу (рис. 68, а). В южном полушарии циклоны смещаются к юго-востоку. Существует также мнение, что отклонению циклонов к высоким широтам способствует вторжение теплого воздуха в теплые сектора соответственно с юга в северном полушарии и с севера в южном.

Развиваясь и перемещаясь, циклоны в конце концов достигают заключительных стадий, нагоняют друг друга и становятся малоподвижными. Циклоны при этом образуют одну общую глубокую обширную область низкого давления в субарктических широтах, которую называют центральным циклоном. В северном полушарии они образуются на севере Атлантического и Тихого океанов, где на климатических картах отмечаются такие центры действия атмосферы, как Исландский и Алеутский минимумы. Активная циклоническая деятельность зимой в умеренных широтах и на арктическом фронте в районе Баренцева и Карского морей формирует там глубокую барическую ложбину, протягивающуюся от Исландского минимума. Вторая аналогичная ложбина простирается от него до моря Баффина. Оси ложбин совпадают с теплыми течениями.

Циклоны, возникающие на внутримассовом полярном фронте между атлантическим морским и континентальным полярным воздухом, смещаются через Центральную Европу на Восточно-Европейскую равнину и далее – на север Западной Сибири. Путь зимних циклонов Средиземноморской ветви полярного фронта лежит через Балканский полуостров, Украину, центральные районы европейской России и далее на северо-восток. С этими циклонами зимой связаны оттепели и выпадение большого количества осадков. На степень проявления циклогенеза отчасти влияют и орографические особенности материков: так, в Северной Америке некоторой преградой на пути северотихоокеанских циклонов к востоку служат Кордильеры.

В южном полушарии циклоны образуют пояс низкого давления вокруг Антарктиды с цепочкой обособленных внутри него барических минимумов.

Таким образом, барические минимумы субполярных широт, особенно хорошо выраженные зимой над океанами и совпадающие с районами положительных температурных аномалий, формируются и поддерживаются приходящими сюда циклонами.

Отклонение антициклонов из умеренных широт к тропикам можно объяснить тем, что ветры в них, дующие по часовой стрелке в северном полушарии и против часовой стрелки в южном, усиливаются западным переносом на их полярных окраинах, что придает движению антициклонов меридиальную составляющую (см. рис. 68, б). В северном полушарии антициклоны смещаются к юго-востоку, в южном – к северо-востоку. Замыкающие антициклоны, вторгаясь из умеренных широт в субтропические, постоянно регенерируют и поддерживают там области повышенного давления – океанические субтропические барические максимумы: Северо-Атлантический, Северо-Тихоокеанский, Южно-Атлантический, Южно-Тихоокеанский и Южно-Индийский. Таким образом, все центры действия атмосферы – постоянные и сезонные барические минимумы и максимумы имеют комплексное – и термическое, и динамическое происхождение.

Благодаря меридиональной составляющей фронтальные циклоны и антициклоны участвуют в междуширотном обмене воздуха от субтропиков до субполярных широт. В этом обмене немаловажную роль играют и ветры внутри циклонов и антициклонов. По тыловой западной периферии антициклонов и передней восточной периферии циклонов они переносят теплые массы воздуха от низких широт в сторону полюсов. По тыловой западной периферии циклонов и передней восточной периферии антициклонов холодные массы воздуха вторгаются вплоть до тропиков.

Так сами циклоны и антициклоны, наряду с ветрами по их периферии, осуществляют обмен воздушными массами в меридиональном направлении. Но зональная составляющая все же преобладает, что выражается в перемещении циклонов и антициклонов в умеренных и сопредельных широтах с запада на восток.

Иная – муссонная циркуляция возникает во внетропических (прежде всего в умеренных и субтропических) широтах на восточных побережьях материков. Здесь четко выражено резкое изменение преобладающего направления ветров зимой и летом на противоположное, что связано с различным сезонным нагреванием суши и океана и перестройкой вслед за температурой давления и изменения положения центров действия атмосферы в этих широтах. Подобные ветры называются муссонами внетропических широт (см. рис. 64). Рассмотрим их на примере северного полушария. Летом циркуляция здесь определяется субтропическими океаническими максимумами, смещающимися к северу, и барическими минимумами над континентами. По западным перифериям Северо-Атлантического и Северо-Тихоокеанского максимумов относительно теплые морские тропические и полярные воздушные массы перемещаются с юга и юго-востока на нагретые континенты – Азию и Северную Америку. Это перемещение осуществляется в виде серий циклонов, зарождающихся на контакте морского и континентального воздуха и следующих по направлению воздушных потоков к северу и северо-западу. С циклонами на континенты приходят массы морского тропического или полярного (в зависимости от широты места) воздуха, насыщенного влагой, которая изливается в виде обильных муссонных дождей, особенно на восточных склонах гор и их предгорьях.

Зимой в этих районах циркуляция воздушных масс определяется сезонными континентальными Канадским и Азиатским максимумами и ярко выраженными Исландским и Алеутским минимумами над океанами. Устойчивые северо-западные ветры приносят с материков на их восточные побережья сухой и холодный континентальный полярный воздух, снижая температуру зимой нередко до отрицательных

значений даже на Великой Китайской равнине. Китайские метеорологи установили, что между зонами экваториально-тропических муссонов (с повторяемостью более 60%) и вне-тропических муссонов (с повторяемостью менее 40%) существует узкая полоса без муссонов. Это свидетельствует о различной природе этих муссонных полей.

В Северной Америке на восточных побережьях внетропических широт муссонная циркуляция ослаблена и муссонность климата почти не выражена.

Своеобразна атмосферная циркуляция в высоких широтах. Здесь проявляется ее термическая составляющая, которая выражается в преобладании ветров восточных направлений. Особенно хорошо выражены юго-восточные ветры по окраинам Антарктиды; там они усиливаются стоковым эффектом (стеканием холодного воздуха вниз с высокого ледникового щита) и устойчиво дуют со скоростью до 20 м/с. В северном полушарии устойчивые северо-восточные ветры отмечаются лишь по южной окраине Гренландии, где они дуют из Гренландского максимума в Исландский минимум. В высоких широтах Азии и Северной Америки в циркуляции атмосферы отмечена муссонная тенденция (повторяемость ветров – менее 40%). Зимой там дуют холодные и сухие южные ветры из Азиатского и Канадского максимумов. Летом направление ветров меняется на обратное – они дуют с холодного Северного Ледовитого океана на прогретую сушу в направлении термических депрессий над Сибирью и Северной Канадой. Однако эти ветры не дают муссонного климатического эффекта, в частности обилия и сезонности в количестве осадков.

Внетропические муссоны занимают важное место в системе обшей циркуляции атмосферы и в районах их устойчивого развития оказывают большое влияние на климат.

Воздушные массы

Наряду с географической широтой важным климатообразующим фактором является циркуляция атмосферы, т. е. перемещение воздушных масс.

Воздушные массы - значительные объёмы воздуха тропосферы, который обладает определёнными свойствами (температура, влагосодержание), зависящими от особенностей района его формирования и движущиеся как единое целое.

Протяжённость воздушной массы может составлять тысячи километров, а вверх она может простираться до верхней границы тропосферы.

Воздушные массы по скорости перемещения разделяют на две группы: движущиеся и местные. Движущиеся воздушные массы в зависимости от температуры подстилающей поверхности делятся на теплые и холодные. Теплая воздушная масса - движущаяся на холодную подстилающую поверхность, холодная масса - движущаяся на более теплую поверхность. Местные воздушные массы - это воздушные массы, которые длительное время не меняют своё географическое положение. Они могут быть устойчивыми и неустойчивыми в зависимости от сезона, а также сухими и влажными.

Выделяют четыре основных типа воздушных масс: экваториальные, тропические, умеренные, арктические (антарктические). Кроме того, каждый из типов подразделяется на подтипы: морские и континентальные, различающиеся меж собой по влажности. Например, морская арктическая масса формируется над северными морями - Баренцевым и Белым морем, характеризуется, как и континентальная воздушная масса, но с немного повышенной влажностью (см. рис. 1).

Рис. 1. Район формирования арктических воздушных масс

Климат России формирует в той или иной степени все воздушные массы, за исключением экваториальной.

Свойства воздушных масс

Рассмотрим свойства различных масс циркулирующих на территории нашей страны. Арктическая воздушная масса формируется преимущественно над Арктикой в полярных широтах, характеризуется низкими температурами зимой и летом. Ей присуща низкая абсолютная влажность и высокая относительная. Эта воздушная масса господствует круглый год в арктическом поясе, а зимой перемещается в субарктику. Умеренная воздушная масса формируется в умеренных широтах, где в зависимости от времени года изменяется температура: летом относительно высокая, зимой относительно низкая. По сезонам года от места формирования зависит и влажность. Эта воздушная масса господствует в умеренном поясе. Отчасти, на территории России преобладают тропические воздушные массы. Они формируются в тропических широтах и имеют высокую температуру. Абсолютная влажность зависит от места формирования, а относительная влажность обычно низкая (см. рис. 2).

Рис. 2. Характеристика воздушных масс

Прохождение различных воздушных масс на территории России обуславливает разницу в погодах. Например, все «волны холода» на территории нашей страны приходящие с севера, - это арктические воздушные массы, а на юг европейской части приходят тропические воздушные массы малой Азии или, иногда, с севера Африки (именно они приносят жаркую, сухую погоду).

Циркуляция атмосферы

Рассмотрим, как воздушные массы циркулируют по территории нашей страны.

Циркуляция атмосферы - это система движений масс воздуха. Различают общую циркуляцию атмосферы в масштабе всего земного шара и местную циркуляцию атмосферы над отдельными территориями и акваториями.

Процесс циркуляции воздушных масс обеспечивает территорию влагой, а также влияет на температуру. Воздушные массы перемещаются под действием центров атмосферного давления, а центры меняются в зависимости от времени года. Именно поэтому изменяются направления господствующих ветров, которые приносят на территорию нашей страны воздушные массы. Например, Европейская Россия и западные районы Сибири находятся под воздействием постоянных западных ветров. С ними поступают морские умеренные воздушные массы умеренных широт. Они формируются над Атлантикой (см. рис. 3).

Рис. 3. Движение морских умеренных воздушных масс

Когда ослабевает западный перенос, с северными ветрами приходит арктическая воздушная масса. Она приносит резкое похолодание, раннее осенние и поздние весенние заморозки (см. рис. 4).

Рис. 4. Движение Арктической воздушной массы

Континентальный тропический воздух на территорию азиатской части нашей страны приходит из Средней Азии или из Северного Китая, а в европейскую часть страны приходит с полуострова Малая Азия или даже с Северной Африки, но чаще такой воздух формируется на территории Северной Азии, Казахстана, Прикаспийской низменности. Эти территории лежат в умеренном климатическом поясе. Однако воздух над ними летом очень сильно прогревается и приобретает свойства тропической воздушной массы. Континентальная умеренная воздушная масса круглый год преобладает в западных районах Сибири, поэтому зима здесь ясная и морозная, а лето достаточно тёплое. Даже над Северным Ледовитым океаном в Гренландии бывают зимы теплее.

Из-за сильного охлаждения над азиатской частью нашей страны в Восточной Сибири формируется область сильного охлаждения (область высокого давления - Сибирский антициклон). Его центр располагается в районах Забайкалья, республике Тыва и Северной Монголии. Очень холодный континентальный воздух растекается от него в разные стороны. Он распространяет свое влияние на огромные территории. Одно его направление - это северо-восток вплоть до Чукотского побережья, второе - на запад через Северный Казахстан и юг Русской (Восточно-Европейской) равнины примерно до 50ºс. ш. Устанавливается ясная и морозная погода с небольшим количеством снега. Летом из-за прогревания азиатский максимум (Сибирский антициклон) исчезает и устанавливается пониженное давление (см. рис. 5).

Рис. 5. Сибирский антициклон

Сезонное чередование областей высокого и низкого давления формирует на Дальнем Востоке муссонную циркуляцию атмосферы. Важно представлять себе, что, проходя по определённым территориям, воздушные массы могут изменяться в зависимости от свойства подстилающей поверхности. Этот процесс называется трансформацией воздушных масс . Например, арктическая воздушная масса, будучи сухой и холодной, проходя по территории Восточно-Европейской (Русской) равнине нагревается и в районе Прикаспийской низменности становится очень сухой и жаркой, что является причиной суховеев.

Азиатский максимум

Азиатский максимум , или, как его называют, сибирский антициклон - это область повышенного давления, которая формируется над Центральной Азией и Восточной Сибирью. Проявляется зимой и образуется в результате выхолаживания территории в условиях огромных размеров и котловинного рельефа. В центральной части максимума над Монголией и Южной Сибирью давление в январе иногда достигает 800 мм рт. ст. Это самое высокое зафиксированное на земле давление. Зимой сюда простирается великий Сибирский антициклон, особенно устойчивый с ноября по март. Зима здесь такая безветренная, что при малой снежности ветви деревьев подолгу белеют от «нестряхиваемого» снега. Морозы уже с октября достигают -20… -30ºС, а в январе же нередко доходит до -60ºC. Средняя температура за месяц опускается до -43º, особенно холодно в низинах, где застаивается холодный тяжёлый воздух. При безветрии сильные морозы переносятся не так тяжело, но при -50º уже трудно дышится, наблюдаются низовые туманы. Такие морозы затрудняют посадку самолётов.

Список литературы

География России. Природа. Население. 1 ч. 8 класс / В. П. Дронов, И. И. Баринова, В. Я Ром, А. А. Лобжанидзе. В. Б. Пятунин, Е. А. Таможняя. География России. Природа. Население. 8 класс. Атлас. География России. Население и хозяйство. - М.: Дрофа, 2012. В. П.Дронов, Л. Е Савельева. УМК (учебно-методический комплект) «СФЕРЫ». Учебник «Россия: природа, население, хозяйство. 8 класс». Атлас.

Климатообразующие факторы и циркуляция атмосферы. Свойства воздушных масс, формирующих климат России. Западный перенос воздушных масс. Воздушные массы. Циркуляция атмосферы.

Домашнее задание

Какой перенос воздушных масс господствует в нашей стране? Какими свойствами обладают воздушные массы, и от чего это зависит?